
Journal of Computational Physics170,373–394 (2001)

doi:10.1006/jcph.2001.6740, available online at http://www.idealibrary.com on

A Fast Semi-Lagrangian Contouring Method
for Moving Interfaces

John Strain1

Department of Mathematics, University of California, 970 Evans Hall No. 3840, Berkeley,
California 94720-3840

E-mail: strain@math.berkeley.edu

Received August 18, 2000; revised January 29, 2001

General moving-interface problems are solved by a new approach: evaluating an
explicit semi-Lagrangian advection formula with efficient geometric algorithms and
extracting the moving interface with a fast new contouring technique. The new app-
roach decouples spatial and temporal resolutions, and grid-free adaptive refinement
of the interface increases accuracy dramatically. A modular implementation, with a
fast new intrinsic geometry module, computes highly accurate solutions to geometric
moving-interface problems involving merging, anisotropy, and faceting; with a high-
order embedded geometry module, it solves second-order problems involving cur-
vature, dynamic topology, and nonlocal interactions.c© 2001 Academic Press

1. INTRODUCTION

A new approach to numerical methods for general moving-interface problems is pre-
sented. We contour a semi-Lagrangian advection formula, evaluated with efficient geomet-
ric algorithms, to extract the moving interface. A fast new contouring technique controls the
interface resolution independent of the time step, and grid-free adaptive refinement increases
accuracy by orders of magnitude. Semi-Lagrangian advection merges and breaks complex
topology, with stable time stepping independent of the interface resolution, while fast geo-
metric algorithms resolve anN-element interface with optimalO(N log N) efficiency. Our
implementation provides fast new intrinsic first-order and embedded second-order geometry
evaluation modules for solving specific moving-interface problems.

The work extends the modular semi-Lagrangian moving-interface methods of [22–25].
The convenient and flexible modular black-box approach decouples into several modules
with independently controllable resolution. Exact geometric algorithms are tuned for speed,
velocity evaluation and time stepping are decoupled from interface resolution, and the

1 Research supported by Air Force Office of Scientific Research Grant FDF49620-96-1-0201.

373

0021-9991/01 $35.00
Copyright c© 2001 by Academic Press

All rights of reproduction in any form reserved.

374 JOHN STRAIN

new contouring technique dramatically increases overall accuracy. This efficient adaptive
framework combines the high resolution of front tracking [1] with the topological robustness
of level sets [16].

We convert the moving-interface problem to a fixed-domain advection equation in Sec-
tion 1.1 and present our semi-Lagrangian advection formula in Section 1.2. The formula
is efficiently evaluated at any desired point by the fast tree-based geometric algorithms
of Section 1.3, and the interface is extracted by the fast adaptive contouring technique of
Section 2. Evaluation modules for geometric velocities are supplied in Section 3. A de-
tailed two-dimensional implementation is presented in Section 4, where numerical results
show that the method computes accurate viscosity solutions to a wide variety of geometric
moving-interface problems involving anisotropic faceting, merging, corners, nonlocality,
and curvature. Our algorithm extends naturally to three dimensions, and an implementation
is in progress.

1.1. Advection of Moving Interfaces

An effective method for general moving interfaces should resolve complex nonsmooth
interfaces, merging and evolving on disparate time scales. In Fig. 1, for example, (a) initially
circular interfaces0(t) shear into complex shapes under a passive transport velocityV =
V(x), (b) nonsmooth facets develop under a velocityV = V(N) depending on the outward
unit normal vectorN, (c) circles merge and cusps emerge under unit normal velocity
V = N, and (d) a complex polygon shrinks on widely varying time scales under curvature
flow V = C.

Topological changes such as merging can be naturally resolved with an implicit repre-
sentation of the interface0(t) via its signed distance function

F(x, t) = ± min
y∈0(t)
‖x − y‖. (1)

If the specified velocity functionalV on0 is extended smoothly to a vector fieldW(x, t)
onRd, then solving the advection equation

Ft −W · ∇F = 0 (2)

moves the zero set0(t) of the initial dataF with velocity V . Topological changes in0(t)
are discovered when the zero set is extracted fromF by contouring.

FIG. 1. Challenges in moving interfaces: (a) complexity, (b) faceting, (c) merging, and (d) varying time scales.

FAST SEMI-LAGRANGIAN CONTOURING METHOD 375

We solve the advection equation by the second-order semi-Lagrangian formula presented
in Section 1.2. Three independent computational modules then transform the moving inter-
face to an advection problem:

• a fast distancing algorithm similar to [22], which produces the exact signed distance
F from a given interface0 (Section 1.3),
• a fast extension algorithm from [25], which extends interfacial velocitiesV defined on

0 to global smooth velocitiesW defined everywhere onRd (Section 1.3), and
• the fast adaptive contouring technique of Section 2, which extracts the zero set0 from

the solutionF of the advection equation with user-specified accuracy.

1.2. Semi-Lagrangian Advection Formulas

We solve the advection equation (2) with an explicit semi-Lagrangian formula which
allows us to extract only the zero set of the solution. Such formulas rely on the observation
that Eq. (2) propagates solution values along characteristicsx = s(t) satisfying

ṡ(t) = −W(s(t), t). (3)

Thus the solutionF(x, t + k) at timet + k can be evaluated by solving the characteristic
ODE (3) backwards in time fromx = s(t + k) to s(t) and settingF(x, t + k) = F(s(t), t).
Semi-Lagrangian schemes solve the characteristic ODE numerically fromx = s(t + k) to
s(t) and approximate the off-grid valueF(s(t), t) by shape-preserving interpolation [14]
or monotone advection [18]. (Our approach omits the approximation ofF and evaluates the
signed distanceF(s(t), t) exactly.) Their unconditional stability allows large time steps in
linear advection [19, 20] and moving interfaces [23–25], leaving the time step controlled
only by accuracy.

Semi-Lagrangian moving-interface methods which solve the advection equation by the
first-order Courant–Isaacson–Rees (CIR) formula [3],

G̃(x) = F(x̃, t) = F(x + kW(x, t), t), (4)

were developed and justified in [23, 24]. In [25], we combined the CIR predictor (4) with
a second-order trapezoidal corrector formula,

G(x) = F(x + kW̄(x, t), t), W̄(x, t) = 1

2
W(x̃, t)+ 1

2
W̃(x, t + k). (5)

The predicted velocityW̃ extends the velocitỹV determined by the zero set0̃ of G̃ at
time t + k. This predictor–corrector pair is second-order accurate in time, explicit, and
unconditionally stable in the maximum norm: each newG value is an exactF value, so the
maximum ofF can never increase.

In the context of a moving interface, semi-Lagrangian advection defines the numerical
solution G by a simple explicit functional formula (5) at any desired evaluation point.
Eulerian methods, by contrast, advance solution values on a grid and interpolate between
grid points. Thus semi-Lagrangian methods find the new interface att + k by contouring a
well-defined function without evaluating the advected solution away from its own zero set.
Computational effort is naturally concentrated on the moving interface.

376 JOHN STRAIN

FIG. 2. (a) Four-level distance tree for a simple interface and (b) triangulation of its cell vertices and centers,
built from the cell configurations in (c).

Since our advection velocityW(x, t) extends the user-specified velocity functionalV
defined on the zero set0(t) of F(x, t), each semi-Lagrangian time step0(t)→ 0(t + k)
involves the following substeps:

• Evaluate the signed distanceF from the interface0(t).
• Evaluate the interfacial velocityV of 0(t) by a user-supplied module.
• Extend V to a global advection velocityW.
• Contour the predicted CIR solutioñG defined by Eq. (4) to get the predicted interface

0̃.
• Evaluate the predicted interfacial velocitỹV of 0̃.
• Extend Ṽ to a global advection velocitỹW.
• Contour the corrected trapezoidal solutionG defined by Eq. (5) to get the corrected

interface0(t + k).

The distancing and extension substeps are efficiently implemented via the quadtree-based
algorithms of Section 1.3, while effective algorithms for the contouring substeps are pre-
sented in Section 2. Geometric velocity-evaluation modules are described in Section 3.

1.3. Quadtree Meshes: Distancing and Extension

A quadtree meshis composed of square cells organized into anL-level tree structure as
in Fig. 2. Our fast algorithms for distancing and velocity extension are based on a specific
quadtree developed in [22].

The distance tree.An interface0 composed ofN piecewise-linear elements of similar
size can be efficiently resolved on a tree mesh built by splitting any cellC whose edge
length exceeds its minimum distance

d(C, 0) = min
x∈C

min
y∈0
‖x − y‖ (6)

to 0. When the elements vary widely in size, computational efficiency benefits from a
modified criterion: split cells whose concentric triples2 intersect more than two adjacent
elements. This adaptive resolution copes better with interfaces resolved over widely varying
spatial scales. Such a tree allows fastO(N log N) evaluation of the signed distance function
F(x) on each cellC by the fast distancing algorithm from [25]:

2 If C = {|xi − ai | ≤ r }, then the concentric tripleT of C is defined byT = {|xi − ai | ≤ 3r }.

FAST SEMI-LAGRANGIAN CONTOURING METHOD 377

• Start: Set the current minimum distancem to 0 equal to∞.
• Loop: While l ≥ 0 and the cubeC(x,m) with centerx and half-side lengthm is not

completely contained in the concentric tripleT of C, replaceC by its parentC∗, find and
record an element0∗j nearest tox in the element list ofC∗, replacem by the minimum
distancem∗ from x to 0∗j , and replacel by l − 1.
• Sign: Given a nearest element0∗j to x, determine the sign ofF = ±m∗ by checking

normal vectors of0∗j and its neighbors.

This search strategy builds the distance tree inO(N log N) time and space complexity
and always terminates in a bounded number of steps: ind ≤ 4 dimensions, any element
intersectingT is nearer tox than any element outside the tripleT∗∗∗ of thegreat-grandparent
C∗∗∗.

Triangulation. For “balanced” quadtrees in which adjacent cells differ in size by no
more than a factor of 2—such as the distance tree shown in Fig. 2a—cell vertices and
centers can easily be triangulated into conforming meshes [4]. Each cell in such a tree has
0 to 4 smaller neighbors ind = 2 dimensions, so a triangulation can be built from the six
possible cell configurations shown in Fig. 2c. The three-dimensional case is similar with
more configurations.

Velocity extension. Moving interfaces via the advection equation (2) requires a globally
defined velocityW which extendsV smoothly off the interface0(t). Some moving-interface
problems suggest a natural velocity extension, but a modular widely applicable black-box
solver requires a general problem-independent velocity extension as in [25].

If g is any continuous function on0, a nearest-point extensionG is defined byG(x) =
g(y), wherey is a point on0 nearest tox, chosen arbitrarily if there are several points
equidistant fromx. The nearest-point extensionG is continuous near smooth interfaces0
but may be discontinuous at pointsx with several nearest neighbors. The numerical Whitney
extension procedure of [25] guarantees continuity by building the continuous piecewise-
linear interpolantW of the nearest-point extensionG from the triangulated distance tree
mesh. Both extensions satisfy amaximum principle: The maximum overRd of W cannot
exceed the maximum over0 of g. Wheng is the velocityV of 0, the maximum principle
guarantees that regions of space far from0 cannot move faster than the interesting nearby
regions.

The nearest-point extension can be efficiently evaluated on a triangulated distance tree
for 0. When the tree is built, a pointer from each vertex and center to a nearest element of0

is stored.G(x) can then be evaluated inO(1) time by finding a nearest pointy on a known
nearest element and settingG(x) = g(y). Table I verifies theO(N log N) cost of building
the distance tree and evaluating the nearest-point extension shown in Fig. 3.

TABLE I

CPU Seconds for Tree Building, Triangulation, and Extension

K 6 7 8 9 10 11 12

Cells 1421 2957 6029 12,173 24,461 49,037 98,189
Distance tree 0.04 0.11 0.24 0.57 1.24 2.81 6.35
Triangulation 0.02 0.05 0.11 0.24 0.51 1.11 2.32
Extension 0 0.01 0.01 0.02 0.03 0.07 0.14

378 JOHN STRAIN

FIG. 3. (a) Interface andK -level distance tree, (b) interfacial velocityx-componentVx, and (c) nearest point
extensionWx with K = 5 and 6.

At completely arbitrary pointsx ∈ Rd, a distance tree does not guarantee efficient eval-
uation of the nearest-point extension. Pointsx located in large cells far from0 may require
searching long lists withO(N) elements. However, the distance tree speeds upG(x) eval-
uation for x near0, because such points are contained in small cells with few nearby
elements where the search strategy is efficient. Thus we use the nearest-point extension
for semi-Lagrangian contouring where effort is focused near the interface. The numerical
Whitney extension can be efficiently evaluated everywhere by point location [6, 15] and
local interpolation.

2. FAST ADAPTIVE CONTOURING

The contouring problem—extracting the zero set of a given continuous functionG—
naturally separates into two stages: topology resolution and contour approximation [2, 8,
11]. Topology resolution determines a consistent and hopefully correct topology for the set
of curves, surfaces, and degenerate objects which make up the zero set. Each component
of the zero set is enclosed in a collection of bounding boxes which separates it from the
other components. Contour approximation iteratively refines an explicit representation of the
approximate zero set for increased accuracy. We describe our topology resolution technique
in Section 2.1 and adaptively refine the interface in Section 2.2. The two-dimensional
algorithm presented generalizes immediately to three dimensions: triangulation becomes
tetrahedralization and segments become triangles.

Contouring the semi-Lagrangian formula for moving interfaces imposes different re-
quirements than many standard graphical applications of contouring. Our main issues are:

FAST SEMI-LAGRANGIAN CONTOURING METHOD 379

FIG. 4. Island formation at cusps in merging.

Accuracy. We require a contouring technique with high and controllable accuracy. The
zero set found at each time step becomes the initial value for evaluating the velocity and
moving the interface through the next time step. Therefore contouring errors of sizeα

accumulate into global errorO(α/k) per unit time.

Consistency. In the presence of inexact computer arithmetic, high accuracy requires
globally correlated decisions to ensure a consistent interface topology—free of loops, cross-
ing, dead ends, and so forth. In the context of moving interfaces where cusps form and pinch
off, the exact topology of the numerical solution at timet may be irrelevant to the later evo-
lution of the interface (Fig. 4). Thus consistency may be balanced against efficiency and
accuracy.

Efficiency. Since we contour the solution twice per time step, the contouring technique
must be efficient: computational effort should concentrate on the zero set. Standard con-
touring techniques obtain a set of smooth contours to high accuracy with a global uniform
Cartesian mesh [13]. This is more than we want, at a price we cannot afford.

Derivatives. Many robust contouring techniques require derivatives ofG, assume that
G is a piecewise polynomial or spline, or assume that all zeroes of certain nonlinear sys-
tems involvingG and∇G can be found exactly [2, 8]. Evaluation of∇G from a semi-
Lagrangian formula requires differentiation of nonsmooth distance functions and extended
velocities, so derivative-free contouring techniques are desirable. However,G is within O(k)
of the signed distance functionF , which has‖∇F‖ = 1 almost everywhere; thus a gradient
bound‖∇G(x)‖ ≤ γ can usually be assumed and plays a key role in resolving a consistent
topology.

Transversality. Contouring problems are well posed under the transversality condition
that G and∇G do not vanish simultaneously [2]. For the CIR formulaG(x) = F(x +
kW(x))and certain special velocitiesW, this condition can be verified by exact computation.
In moving interfaces, we usually assume transversality since we start from a fresh signed
distance function with‖∇F‖ = 1 at each time step.

2.1. Topology Resolution

We extract a consistent topology for the interface by building aK -level triangulated
quadtree mesh, evaluatingG at the mesh vertices, finding the exact zero set of the continuous
piecewise-linear interpolant, and refining its vertices by bisection.

Meshing. The zero set0 of G can be efficiently resolved on a triangulated quadtree mesh
built by pretending thatG is a signed distance function and splitting each cellC whose edge

380 JOHN STRAIN

FIG. 5. Linear contouring and bisection of a zero set.

length exceeds the minimum value of|G| onC. SinceG is not a signed distance function,
the resulting quadtree may beunbalancedand difficult to triangulate: neighboring cells vary
in size by more than a factor of 2 (Fig. 2).

We can balance the quadtree by brute force [4] or by modifying the cell splitting criterion:
fix an estimated gradient boundγ for ‖∇G‖ and split every cellC whose size exceeds the
minimum of|G|/γ overC. If the bound‖∇G‖ ≤ γ holds, then the resulting tree is balanced
and easy to triangulate. Otherwise, we doubleγ and rebuild until satisfied.

Interpolation. Given nonzero function valuesG(x) at the vertices of a triangulation,
extracting the zero set of the continuous piecewise linear interpolantQ on the triangulation
is straightforward. Ind = 2 dimensions, for example, each triangle whereG changes sign
contains a unique line segment on whichQ vanishes. These line segments form a polyg-
onal curve because the triangulation is conforming andQ is continuous. Following each
polygonal zero curve as far as possible in both directions produces an oriented component
of 0(t + k) with G > 0 on its right (Fig. 5). Ind = 3 dimensions the contouring process is
similar: tetrahedra replace triangles and triangular patches replace line segments.

Exact zero vertex values produce ambiguities in extracting the zero set ofQ, we choose
a small toleranceβ such as 10−10 and perturb vertices where|G| ≤ β until all vertex values
of |G| exceedβ. If repeated perturbations fail, transversality is doubtful and the contouring
problem may be ill posed.

Table II verifies the predictedO(N log N) = O(K2K) cost andO(2−2K) = O(h2) ac-
curacy of linear interpolation on the triangulated quadtree, applied to the interface of Fig. 6.
The error reported is the maximum of the exact distance function|G|over segment endpoints
and midpoints.

Bisection. Before declaring the interface topology resolved, we move each interface
vertex to satisfy|G| ≤ β. Each interface vertex found from the linear interpolant is known

TABLE II

Error and CPU Seconds for Linear Contouring

K 3 4 5 6 7 8 9

Cells 85 301 865 2041 4445 9309 19,005
Segments 47 114 217 436 889 1819 3610
Length 0.48 0.214 0.104 0.0604 0.0305 0.0150 0.00817
Error 0.191 0.121 0.0323 0.0099 0.00296 0.000828 0.000214
CPU 0.01 0.01 0.03 0.07 0.15 0.35 0.71

FAST SEMI-LAGRANGIAN CONTOURING METHOD 381

FIG. 6. Contouring a propeller shape on a triangulatedK -level tree mesh.

to lie on the edge of some triangle1, bracketed by two triangle vertices withG values of
opposite sign. A standard one-dimensional bisection algorithm [12] applied along this edge
is guaranteed to produce a zero ofG on this edge to accuracyβ in O(logβ) evaluations
of G (Fig. 5). In three-dimensional problems, the interface is a collection of triangles in
R3, and each triangle vertex moves along an edge of the tetrahedralization. The resulting
interface enjoys|G| values belowβ at every vertex and shares the topology of the piecewise
linear interpolant on the triangulation. In Section 2.2, we adjust the patches which connect
these highly accurate vertices, to improve the resolution of the interface without changing
the interface topology.

2.2. Contour Approximation

Given a collection of piecewise linear patches with a consistent topology and all vertices
within O(β) of the exact interface, we now improve the resolution of the underlying zero
set0 by P passes of the following adaptive refinement algorithm (Fig. 7).

Split. Any patch where|G| exceeds a specified toleranceα at the midpoint is subdivided
into patches of half the size. New vertices are interpolated linearly between existing vertices.
Since|G| > α at the new vertices, the following steps move them to reduce|G|.

FIG. 7. Adaptive refinement of a zero set.

382 JOHN STRAIN

FIG. 8. Safeguards in adaptive refinement: (a) topology preservation and (b) triangle limiting.

Bracket. New interface vertices, unlike the linear interpolant vertices of Section 2.1, are
not bracketed between triangulation vertices whereG changes sign. Thus bisection requires
a preliminary bracketing step which finds a point whereG has opposite sign from the new
vertex. In order to keep vertices from bunching together and losing resolution, we seek
brackets along the normal vector to the interface at the new vertexx at distance equal to
the patch radius. The bracketing distance is reduced if necessary to avoid collisions with
adjacent segments (Fig. 8).

Bisect. For each bracket found, we run the bisection algorithm to obtain an approximate
zero within toleranceβ. If more than one approximate zero is found, we accept the one
nearest to the new vertex, subject to the following topological safeguards.

Safeguards. We avoid adjacent patch crossings by rejecting any new vertices which
would produce a tiny angle|θ | ≤ 2.56◦ with either neighbor. Such crossings are possible
when adaptive refinement attempts to compensate for incorrect topology in the linear inter-
polant (Fig. 8). The topology of the linear interpolant can be preserved by preventing new
vertices from leaving the triangle where they start, but this sacrifices too much accuracy for
the sake of topology preservation. Thus we allow new vertices to move to adjacent triangles,
but only if the destination is empty (Fig. 8).

Prune. In the final pruning step, we produce a more uniform resolution of the interface
by deleting patches with areas less thanρ times smaller than their neighbors. Pruning
produces neighboring patches of comparable sizes, yielding more accurate normal vectors
when the intrinsic geometry module of Section 3.1 is used.

The O(α−1/2) cost andO(α) accuracy of the segment midpoints produced by this algo-
rithm for the smooth interface of Fig. 6 are verified in Table III.

3. LOCAL GEOMETRIC VELOCITIES

Solving any moving-interface problem with our modular approach requires a user-
supplied module which evaluates the interfacial velocity functional. We provide two mod-
ules for geometric velocitiesV = V(x, t, N,C) which depend on the local position and
geometry of the interface. These velocity functionals pose numerical difficulties because

FAST SEMI-LAGRANGIAN CONTOURING METHOD 383

TABLE III

Error and CPU Seconds for Adaptive Contouring of a Propeller

K/α 3/10−1 4/10−2 5/10−3 6/10−4 7/10−5 8/10−6 9/10−7

Cells 85 301 865 2041 4445 9309 19,005
Segments 32 82 245 757 2344 7382 23,683
Length 0.55 0.227 0.101 0.049 0.027 0.011 0.0034
Error 10−1 10−2 10−3 10−4 10−5 10−6 10−7

CPU 0.02 0.04 0.09 0.26 0.78 2.38 7.41

standard formulas forN andC are complicated and their numerical approximation is sensi-
tive. Thus we evaluate normal vectors by intrinsic methods in two dimensions and curvature
by embedded methods in general dimension.

3.1. Intrinsic Geometry

Suppose0 is a curve inR2, approximated by a polygon with edgesxi xi+1. The exact
normal vector and curvature are given by the intrinsic formulas [5]

N = x⊥s
‖xs‖ = (cosθ, sinθ), C = 1

‖xs‖
d

ds
θ(s), (x, y)⊥ = (−y, x),

wherex(s) is a parametrization of0. For any functiong(s) on0, a natural discretization
of the vertex derivativedg

ds is the left–right average difference

1gi = 1

2

(
gi+1− gi

‖xi+1− xi ‖ +
gi − gi−1

‖xi − xi−1‖
)
.

With g = x this gives an approximate normal

Ni = 1x⊥i
‖1xi ‖ . (7)

Since the normal angleθ satisfies

N⊥ · d N

ds
= θs,

we can approximate curvature by

Ci = 1

‖1xi ‖N⊥i ·1Ni . (8)

Equation (7) produces first-order-accurate normal vectors if0 is smooth, but Eq. (8) often
produces inaccurate oscillatory curvature. Thus we present an alternative module based on
embedding0 into a local uniform mesh.

384 JOHN STRAIN

FIG. 9. Local embedded mesh with rangeR= 3 for a simple interface (a), viewed asx-intervals in (b), and
asy-intervals in (c).

3.2. Embedded Geometry

Curvature can be accurately computed from the signed distance functionF via the for-
mulas [26]

N = ∇F

‖∇F‖ , C = −∇ · N, (9)

which embed the interface0 as a subset ofRd. We generalize the velocity-evaluation method
of [25] to build a uniform mesh near0, evaluateF exactly at mesh points, apply high-order
essentially nonoscillatory (ENO) differentiation formulas [10] to extract smooth accurate
approximations toN andC, and interpolate back to the vertices of0.

Embedded mesh.First, we build a local uniform mesh near0 and evaluateF . The sim-
plest technique, marking nearby points of a global uniform mesh, is prohibitively expensive
for fine meshes. Thus we employ the efficient sorting and pruning technique of [25].

A two-dimensional local mesh with mesh sizeh (Fig. 9) can be viewed as a collection
of disjoint x-intervals(i L : i R, j) = {(ih, jh) | i L ≤ i ≤ i R}, or as a similar collection of
y-intervals. It can be built by listing every mesh point withinhorizontaldistanceRhof any
interface pointy ∈ 0 and then listing each mesh point withinverticaldistanceRhof some
point produced in the horizontal pass. Efficient construction algorithms are ensured by
sorting and pruning local mesh points listed more than once. The local mesh is stored in
a data structure which contains the mesh points(ih, jh), a list of x-intervals(i L : i R, j),
and so forth and includes every point necessary to form a difference stencil of half-width
R for differentiating or interpolating to any interface pointy ∈ 0. The three-dimensional
case is similar. The signed distance functionF can be efficiently evaluated at the local mesh
points—which are close to the interface—by fast exact distancing with the distance tree.

Differentiation. Equidistant centered difference formulas oscillate if their stencils cross
points whereF is not smooth. Thus we computeN andC on the local mesh by ENO
methods which shift equidistant stencils to avoid corners inF . We applySpasses of cosine
smoothing to reduce oscillations further and satisfy CFL conditions [25] and then interpolate
N andC back to the vertices of0 and apply the user-specified velocityV(x, t, N,C).

4. IMPLEMENTATION AND NUMERICAL RESULTS

We demonstrate the accuracy and efficiency of the semi-Lagrangian contouring approach
by computing solutions to a wide variety of moving-interface problems. We describe control

FAST SEMI-LAGRANGIAN CONTOURING METHOD 385

TABLE IV

Control Parameters and Default Values

Name Default Explanation

N 40 . . .640 Number of time steps on [0,a]
k a/N Time step
K 3 . . .7 Depth of contouring tree mesh
P 0 . . .4 Depth of adaptive refinement
α 10−K Midpoint error tolerance for adaptive refinement
β 10−10 Bisection tolerance
ρ 10−1 Segment pruning tolerance
M 2−1−K EmbeddedM × M mesh size
E 3 Order of ENO differentiation on embedded mesh
S 0 . . .3 Number of cosine smoothing passes on embedded mesh
L K + P Depth of distance tree

parameters and their default values in Section 4.1, discuss convergence testing in Section 4.2,
and outline our implementation in Section 4.3. We measure dissipation for a propeller under
passive rotation in Section 4.4. First-order geometric velocities depending only onN and
inducing anisotropy and merging are treated in Section 4.5. In Section 4.6, we demonstrate
convergence for second-order curvature-dependent velocities, while motion under a second-
order nonlocal geometric velocity is computed in Section 4.7.

4.1. Control Parameters

Our experiments vary the initial interface0(0), the velocity functionalV , the spacetime
domain [0,a] × [−b, b]2, and the control parameters summarized in Table IV. Convergence
studies proceed by refiningN, K , P, andα with other parameters set to default values.
The distance tree depthL does not affect the error and is set toK + P, so that each distance
tree cell encloses a fixed number of segments for efficiency. We setS= 0 except for strongly
curvature-dependent velocities, where stability requiresS to increase logarithmically with
embedded mesh size.

4.2. Convergence Studies

We carry out both exact and graphical convergence studies. When the exact signed
distance functionF is known, we tabulate maximum interfacial errors

E∞ = max
x∈0(t)

|F(x, t)| (10)

and CPU seconds per stepT . We analyze convergence with 5× 5 tables ofE∞ and T
whereN ← 2N, K ← K + 1, andα← α/10 as the row increases, whileP← P + 1 as
the column increases. Thus each row exhibits first-order spatial convergence until theO(k2)

error takes over, while theP = 4 column exhibits second-order temporal convergence:
the O(α/k) accumulated spatial error iso(k2) sinceα = o(k3). Figure 10 demonstrates
first-order convergenceE∞ = O(T−1) for three cases with exact solutions: rigid rotation
(Section 4.4), merging circles (Section 4.5.2), and curvature flow (Section 4.6.1).

386 JOHN STRAIN

FIG. 10. Errors vs CPU times for exactly solvable examples.

For complex problems where exact solutions are not available, we demonstrate conver-
gence to graphical accuracy by superimposing coarse and fine computations. We label a
computation with given values forN, S, K , P, andα as aN/S/K/P/α run for brevity.

The convergence of the numerical solution (modulo the time-stepping error) asP in-
creases with fixedk supports the conclusions of [20, 23, 25]: semi-Lagrangian methods—
unlike Eulerian methods—do not suffer from Courant–Friedrichs–Lewy (CFL) stability
conditions.

4.3. Implementation

The semi-Lagrangian contouring approach was implemented in Standard C, compiled
with the Sun C compiler and the-fast optimization flag, and run on one 450-MHz CPU
of a Sun Ultra 60 under Solaris 7. Timings reported are preliminary as the code has not
been tuned for maximum speed. Each time stept → t + k of our algorithm begins with
0 = 0(t) and produces0(t + k) by the following steps:

• [D, F] = DistanceTree(L , 0)
[Build an L-level triangulated distance treeD around0.]
• V = Velocity(t, 0)

[Call a user-supplied module to evaluate the velocity on the interface.]
• 0̃ = Contour(K , P, α, β, ρ, G̃(x) = F(x + kW(x, t), t))

[Find the zero set̃0 of the predicted CIR solutioñG.]
• [D̃, F̃] = DistanceTree(L , 0̃)
• Ṽ = Velocity(t + k, 0̃)
• 0(t + k) = Contour(K , P, α, β, ρ,G(x) = F(x + kW̄(x, t), t))

Once the distance tree has been built and nearest points have been stored, the nearest-
point extensionW of the velocityV requires no additional effort to evaluate. Therefore the
extension steps from Section 1.2 can be omitted.

Semi-Lagrangian evaluation.The contouring algorithm requires values ofG̃(x) =
F(x̃, t) constructed by the following sequence of operations (Fig. 11):

• [y, σ] = SignClosestPoint(0, D, x)
[Find the childless distance tree cellC in D containingx; search interface elements in
the concentric triples ofC and its ancestorsC∗, C∗∗, andC∗∗∗; find a nearest point
y ∈ 0(t) to x and the signσ = ±1 of F at x.]

FAST SEMI-LAGRANGIAN CONTOURING METHOD 387

FIG. 11. Evaluation of the CIR predictor and the trapezoidal corrector at a pointx.

• W(x, t) = V(y, t)
[Evaluate the nearest-point extension ofV at x.]
• x̃ = x + kW(x, t)

[Projectx backward to the predicted characteristic pointx̃.]
• [ỹ, σ̃] = SignClosestPoint(0, D, x̃)
• G̃(x) = F(x̃, t) = σ̃‖x̃ − ỹ‖.

[Evaluate the exact signed distance fromx̃ to 0(t).]

Values ofG(x) = F(x + kW̄(x, t), t)) are found with additional operations involving the
predicted interfacẽ0 and its velocityṼ (Fig. 11).

Contouring. Given the ability to evaluate any functionG at arbitrary points, the con-
touring ofG proceeds as follows (Figs. 5 and 7):

• T = Tree(K ,G, γ)
[Build K -level triangulated tree mesh to resolve the zero set ofG with gradient
boundγ .]
• 0 = ZeroSet(ε, T,G)

[Build zero set of linear interpolant toG on triangulation, perturbing triangulation
vertices byε as necessary.]
• 0 = Bisect(0, T, β)

[Refine zero set vertices by bisection along triangle edges to accuracyβ.]
• 0 = Adapt(0,G, α, β, ρ)

[Split segments with midpoint|G| values aboveα, refine new vertices by bracket-
ing and bisection along the normal vector to accuracyβ, and delete segments smaller
thanρ times their neighbors.]

Velocity evaluation. We evaluate geometric velocitiesV with the geometry modules of
Section 3. The intrinsic module is a single straightforward step, while the embedded module
involves the following substeps:

• U = BuildLocalMesh(M, R, 0)
[Build M × M local uniform meshU within rangeR= E + Sof 0.]

388 JOHN STRAIN

FIG. 12. A propeller shape under rigid rotation: two periods.

• F = Distance(U, D)
[Evaluate exact signed distance function at mesh points inU with distance treeD.]
• [n, c] = EmbeddedGeometry(U, F, E)

[Evaluate normal vector and curvature on local uniform mesh with order-E ENO
evaluation of the embedded formulas in Eq. 9).]
• [N,C] = Interpolate(U, n, c, E, 0)

[Interpolate geometric quantities from local uniform meshU to interface0 with order-
E ENO technique.]
• V = Velocity(N,C, 0)

[Evaluate local velocity functional on interface0 with user-supplied module
and interpolatedN andC.]

We use the intrinsic approach for passive transport (Section 4.4) and first-order geometry in-
volving only the normal direction (Section 4.5). The embedded approach produces smoother
and more accurate curvature for the second-order geometric examples of Sections 4.6
and 4.7.

4.4. Passive Transport

We measure the dissipation of our method with a three-bladed propeller under rigid-body
rotationV(x, y) = (−y, x) (Fig. 12). This velocity is naturally defined everywhere, but we
evaluateV only at the vertices of0(t) and extend by the general technique of Section 1.3;
thus Table V provides a realistic picture of the errors after two rotations att = 4π and
supports the theoretical predictions of Section 4.2.

TABLE V

Error E∞ and CPU SecondsT per Step for a Rotating Propeller

N S K α P = 0 1 2 3 4

40 0 3 10−3 E∞ 0.648 0.320 0.256 0.2462 0.247
T 0.079 0.142 0.272 0.445 0.770

80 0 4 10−4 E∞ 0.325 0.193 0.0944 0.0580 0.0778
T 0.232 0.434 0.834 1.39 1.97

160 0 5 10−5 E∞ 0.255 0.126 0.0527 0.0454 0.0158
T 0.695 1.25 2.41 4.54 6.46

320 0 6 10−6 E∞ 0.183 0.0788 0.0311 0.0455 0.00347
T 1.83 3.32 6.67 12.9 22.4

640 0 7 10−7 E∞ 0.124 0.0503 0.0180 0.00647 0.00337
T 4.64 8.36 16.5 33.3 62.5

FAST SEMI-LAGRANGIAN CONTOURING METHOD 389

FIG. 13. Triangles growing and shrinking with unit normal velocity: the circles illustrate Huygens’ principle.

4.5. First-Order Geometric Velocities

We demonstrate the topological robustness of the semi-Lagrangian contouring approach
by computing corners and smooth shapes, growing and merging with unit normal velocity,
and regularly faceted shapes developing under anisotropic normal velocities corresponding
to nonconvex Hamiltonians.

4.5.1. Viscosity Solutions with Corners

Computation of correct “viscosity solutions” for faceted interfaces depends on moving a
corner with unit normal velocity. Inward motion should keep corners sharp, while outward
motion should produce rounded corners.

The semi-Lagrangian formula satisfies Huygens’ principle and naturally computes the
correct viscosity solution for a triangle growing and shrinking with unit normal velocity.
Figure 13 superimposes 40/0/4/2/10−4 over 80/0/5/2/10−4 runs to show convergence to
graphical accuracy. Runs at resolution 80/0/5/2/10−5 and tilted 0◦ versus 10◦ show that grid
orientation effects are negligible. Huygens’ principle is graphically verified.

4.5.2. Cusps in Merging Circles

Sharp inward-pointing corners naturally occur when smooth interfaces merge, so we
verify correct behavior with the convergence study of merging circles shown in Fig. 14.
Cusp singularities and topological changes are computed automatically and accurately. Tiny
bubbles naturally form and disappear at the cusps where tangent circles merge, illustrating
the importance of consistent rather than correct topology resolution. The errors shown
in Table VI and plotted in Fig. 10 surpass theoretical expectations, achieving first-order
accuracy in the maximum norm even for this nonsmooth solution.

FIG. 14. Circles merging with unit normal velocity.

390 JOHN STRAIN

TABLE VI

Error E∞ and CPU Seconds per StepT for Merging Circles

N S K α P = 0 1 2 3 4

40 0 3 10−3 E∞ 0.194 0.0854 0.0432 0.0344 0.0219
T 0.085 0.141 0.230 0.360 0.572

80 0 4 10−4 E∞ 0.0788 0.0386 0.0156 0.00616 0.00470
T 0.212 0.384 0.710 1.17 1.69

160 0 5 10−5 E∞ 0.0423 0.0207 0.00826 0.00298 0.00133
T 0.576 1.05 2.00 3.63 5.50

320 0 6 10−6 E∞ 0.0175 0.0101 0.00401 0.00149 0.000831
T 1.49 2.73 5.22 9.98 17.6

640 0 7 10−7 E∞ 0.00924 0.00509 0.00210 0.000863 0.000378
T 3.73 6.84 13.0 25.3 49.5

4.5.3. Anisotropic Normal Velocity and the Wulff Limit

Anisotropic motion along the normal vector connects moving interfaces to Hamilton–
Jacobi equationsFt + H(∇F) = 0, which encounter difficulties when the HamiltonianH
is nonconvex [7], for example, if

V = R+ ε cos(mθ) whereR+ ε(1−m2) < 0< R− |ε|. (11)

Our semi-Lagrangian approach deals effectively with nonconvex Hamiltonians.
We evolve an initially circular interface using Eq. (11) withR= ±1 and|R| + ε(1−

m2) = −4. Figure 15 shows the development of the faceted interface, superimposing com-
putations tilted at 0◦, 10◦, and 180◦/m for anisotropiesm= 3, 4, 5, and 6. Grid effects are
negligible, convergence is fast, and the interface evolves rapidly into the regularly faceted
Wulff shape [27] with the correct anisotropy.

FIG. 15. Circles growing and shrinking into asymptotic Wulff shapes.

FAST SEMI-LAGRANGIAN CONTOURING METHOD 391

FIG. 16. Circles shrinking under curvature flow.

4.6. Second-Order Geometric Velocities

Geometric velocities involving second-order derivatives, such as curvature generate
parabolic advection equations. Semi-Lagrangian formulas are designed for hyperbolic ad-
vection and require small time steps or additional smoothing to maintain stability for curva-
ture flows [23, 25]. We compute the curvature with an embedded mesh of sizeM = 2K+1

andSpasses of cosine smoothing after each differentiation.S is increased logarithmically
as the resolution is refined, to maintain stability without compromising efficiency and ac-
curacy. The stability of the time-stepping scheme depends on the curvature resolutionM
and smoothingS, but not on the “subgrid” resolution produced byP passes of adaptive
interface refinement.

4.6.1. Circles Shrinking under Curvature

A classic geometric problem shrinks a plane curve with velocity equal to its curvature
and forms a useful second-order test case. A circle shrinking withV = C has exact radius
R(t) =

√
R(0)2− 2t ; thus withR(0) = √5, a circle should shrink to radius 1 at timet = 2.

A smaller circle withR(0) = 1 vanishes completely in timet = 1/2. Figure 16 shows
convergence to graphical accuracy on 0≤ t ≤ 2. CPU seconds per step and maximum
errors in the interface location att = 2 are reported in Table VII and Fig. 10, and they verify
the theoretical predictions of Section 4.2.

TABLE VII

Error E∞ and CPU Seconds per StepT for Curvature Flow

N S K α P = 0 1 2 3 4

20 1 3 10−3 E∞ 0.106 0.130 0.072 0.057 0.057
T 0.131 0.200 0.346 0.483 0.645

40 1 4 10−4 E∞ 0.0664 0.0454 0.0241 0.0160 0.0142
T 0.253 0.462 0.854 1.40 1.90

80 1 5 10−5 E∞ 0.0305 0.0186 0.00909 0.00501 0.00376
T 0.557 1.04 1.99 3.65 5.85

160 2 6 10−6 E∞ 0.0188 0.00894 0.00443 0.00246 0.00186
T 1.15 2.35 4.59 8.62 15.9

320 3 7 10−7 E∞ 0.00684 0.00419 0.00200 0.00101 0.000711
T 2.87 5.20 9.97 19.6 38.4

392 JOHN STRAIN

FIG. 17. Tilted polygon shrinking under curvature flow: runs a through d have parameters 320/1/5/4/10−3

through 2560/4/8/10−6.

4.6.2. Nonconvex Interfaces under Curvature

A geometric theorem [9] predicts that any smooth embedded plane curve should collapse
to a round point and vanish in finite time under curvature flowV = C. We illustrate the
theorem for a complex polygonal shape with the graphical convergence study shown in
Fig. 17. The curvature velocity displays fast-moving infinite transients at initial sharp cor-
ners, an intermediate regime of smooth motion, and infinite velocity again as the interface
vanishes. Our adaptive approach easily converges to graphical accuracy despite the wide
range of spatiotemporal scales.

4.7. A Nonlocal Geometric Velocity

Moving-interface problems, such as crystal growth [17, 21] arenonlocal—the normal
velocity at each point depends on all of0(t) and even on its history{0(s) | 0≤ s ≤ t}. The

FIG. 18. Spiral unwinding under nonlocal volume-preserving curvature flow.

FAST SEMI-LAGRANGIAN CONTOURING METHOD 393

FIG. 19. Bubbles merging under nonlocal volume-preserving curvature flow.

simplest nonlocal geometric velocity

V =
(

C −
∫
0(t) Cds∫
0(t) 1ds

)
N (12)

smooths the moving interface by curvature while preserving the area inside the interface,
so arbitrary shapes become round but the interface does not vanish. Small components
disappear as their area is transferred to large ones.

We study a tilted square spiral unwinding under velocity (12) in Fig. 18, where 512/2/7/3/
10−3 and 1024/3/8/3/10−4 runs converge to graphical accuracy. The interface is shown at
geometrically increasing timest = 0, 0.01, 0.02, . . . ,2.56: its motion slows dramatically as
curvature variation decreases toward its final steady state. Figure 19 shows complex dynamic
merging of initially circular bubbles under velocity (12), with parameters 2048/3/7/4/10−4.
Interfaces merge and disappear accurately and stably even under this second-order nonlocal
velocity.

ACKNOWLEDGMENTS

The author thanks the referees for many helpful suggestions.

REFERENCES

1. G. Agresar, J. J. Linderman, G. Tryggvason, and K. G. Powell, An adaptive, Cartesian, front-tracking method
for the motion, deformation and adhesion of circulating cells,J. Comput. Phys.143, 346 (1998).

394 JOHN STRAIN

2. H. Burger and R. Schaback, A parallel multistage method for surface/surface intersection,Comput. Aided
Geom. Des.10, 277 (1993).

3. R. Courant, E. Isaacson, and M. Rees, On the solution of nonlinear hyperbolic differential equations by finite
differences,Comm. Pure Appl. Math.5, 243 (1952).

4. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,Computational Geometry: Algorithms and
Applications(Springer-Verlag, Berlin, 1997).

5. M. P. do Carmo,Differential Geometry of Curves and Surfaces(Prentice–Hall, New York, 1976).

6. H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone subdivision,Commun.
Assoc. Comput. Mech.29, 669 (1986).

7. L. C. Evans,Partial Differential Equations(Amer. Math. Soc., Providence, RI, 1995).

8. T. A. Grandine and F. W. Klein, IV, A new approach to the surface intersection problem,Comput. Aided Geom.
Des.14, 111 (1997).

9. M. A. Grayson, The heat equation shrinks embedded plane curves to round points,J. Differential Geom.26,
285 (1987).

10. A. Harten, S. Osher, B. Engquist, and S. R. Chakravarthy, Uniformly high order accurate essentially non-
oscillatory scheme,J. Comput. Phys.71, 231 (1987).

11. J. Hoschek and D. Lasser,Fundamentals of Computer Aided Geometric Design(AK Peters Wellesley, MA,
1993).

12. D. E. Knuth,The Art of Computer Programming(Addison–Wesley, Reading, MA, 1998), 2nd ed., Vol. 3,
Sorting and Searching.

13. A. Preusser. Efficient formulation of a bivariate nonicC2-Hermite polynomial on triangles,ACM Trans. Math.
Software16, 246 (1990).

14. P. J. Rasch and D. L. Williamson, On shape-preserving interpolation and semi-Lagrangian transport,SIAM
J. Sci. Stat. Comput.11, 656 (1990).

15. N. Sarnak and R. E. Tarjan, Planar point location using persistent search trees,Commun. Assoc. Comput.
Mech.29, 669 (1986).

16. J. A. Sethian,Level Set Methods and Fast Marching Methods(Cambridge Univ. Press, Cambridge, UK, 1999).

17. J. A. Sethian and J. Strain, Crystal growth and dendritic solidification,J. Comput. Phys.98, 231 (1992).

18. P. K. Smolarkiewicz and W. W. Grabowski, The multidimensional positive definite advection transport algo-
rithm: Nonoscillatory option,J. Comput. Phys.86, 355 (1996).

19. P. K. Smolarkiewicz and J. Pudykiewicz, A class of semi-Lagrangian approximations for fluids,J. Atmos. Sci.
49, 2082 (1992).

20. A. Staniforth and J. Cˆote, Semi-Lagrangian schemes for atmospheric models—A review,Mon. Weather Rev.
119, 2206 (1991).

21. J. Strain, A boundary integral approach to unstable solidification,J. Comput. Phys.85, 342 (1989).

22. J. Strain, Fast tree-based redistancing for level set computations,J. Comput. Phys.152, 648 (1999).

23. J. Strain, Semi-Lagrangian methods for level set equations,J. Comput. Phys.151, 498 (1999).

24. J. Strain, Tree methods for moving interfaces,J. Comput. Phys.151, 616 (1999).

25. J. Strain, A fast modular semi-Lagrangian method for moving interfaces,J. Comput. Phys.161, 512 (2000).

26. C. Truesdell and R. A. Toupin, The classical field theories, inHandbuch der Physik III/1, edited by S. Fl¨ugge
(Springer-Verlag, Berlin, 1960).

27. G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und der Aufl¨osung der Krystallflachen,Z. Krystall.
Min. 34, 449 (1901).

	1. INTRODUCTION
	FIG. 1.
	FIG. 2.
	TABLE I
	FIG. 3.

	2. FAST ADAPTIVE CONTOURING
	FIG. 4.
	FIG. 5.
	TABLE II
	FIG. 6.
	FIG. 7.
	FIG. 8.
	TABLE III

	3. LOCAL GEOMETRIC VELOCITIES
	FIG. 9.

	4. IMPLEMENTATION AND NUMERICAL RESULTS
	TABLE IV
	FIG. 10.
	FIG. 11.
	FIG. 12.
	TABLE V
	FIG. 13.
	FIG. 14.
	TABLE VI
	FIG. 15.
	FIG. 16.
	TABLE VII
	FIG. 17.
	FIG. 18.
	FIG. 19.

	ACKNOWLEDGMENTS
	REFERENCES

