Journal of Computational Physié§0,373-394 (2001)

®
doi:10.1006/jcph.2001.6740, available online at http://www.idealibrary.col DE &l.

A Fast Semi-Lagrangian Contouring Method
for Moving Interfaces

John Straih

Department of Mathematics, University of California, 970 Evans Hall No. 3840, Berkeley,
California 94720-3840
E-mail: strain@math.berkeley.edu

Received August 18, 2000; revised January 29, 2001

General moving-interface problems are solved by a new approach: evaluating an
explicit semi-Lagrangian advection formula with efficient geometric algorithms and
extracting the moving interface with a fast new contouring technique. The new app-
roach decouples spatial and temporal resolutions, and grid-free adaptive refinement
of the interface increases accuracy dramatically. A modular implementation, with a
fast new intrinsic geometry module, computes highly accurate solutions to geometric
moving-interface problems involving merging, anisotropy, and faceting; with a high-
order embedded geometry module, it solves second-order problems involving cur-
vature, dynamic topology, and nonlocal interactionsg.2001 Academic Press

1. INTRODUCTION

A new approach to numerical methods for general moving-interface problems is p
sented. We contour a semi-Lagrangian advection formula, evaluated with efficient geor
ric algorithms, to extract the moving interface. A fast new contouring technique controls
interface resolution independent of the time step, and grid-free adaptive refinementincre
accuracy by orders of magnitude. Semi-Lagrangian advection merges and breaks con
topology, with stable time stepping independent of the interface resolution, while fast g
metric algorithms resolve ad-element interface with optim& (N log N) efficiency. Our
implementation provides fast new intrinsic first-order and embedded second-order georm
evaluation modules for solving specific moving-interface problems.

The work extends the modular semi-Lagrangian moving-interface methods of [22—2
The convenient and flexible modular black-box approach decouples into several mod
with independently controllable resolution. Exact geometric algorithms are tuned for spe
velocity evaluation and time stepping are decoupled from interface resolution, and

! Research supported by Air Force Office of Scientific Research Grant FDF49620-96-1-0201.

373

0021-9991/01 $35.00
Copyright© 2001 by Academic Press
All rights of reproduction in any form reserved.

374 JOHN STRAIN

new contouring techniqgue dramatically increases overall accuracy. This efficient adap
framework combines the high resolution of front tracking [1] with the topological robustne
of level sets [16].

We convert the moving-interface problem to a fixed-domain advection equation in S
tion 1.1 and present our semi-Lagrangian advection formula in Section 1.2. The form
is efficiently evaluated at any desired point by the fast tree-based geometric algoritt
of Section 1.3, and the interface is extracted by the fast adaptive contouring techniqu
Section 2. Evaluation modules for geometric velocities are supplied in Section 3. A «
tailed two-dimensional implementation is presented in Section 4, where numerical res
show that the method computes accurate viscosity solutions to a wide variety of geome
moving-interface problems involving anisotropic faceting, merging, corners, nonlocali
and curvature. Our algorithm extends naturally to three dimensions, and an implementa
is in progress.

1.1. Advection of Moving Interfaces

An effective method for general moving interfaces should resolve complex nonsmot
interfaces, merging and evolving on disparate time scales. In Fig. 1, for example, (a) initié
circular interfaced’(t) shear into complex shapes under a passive transport veldcity
V (x), (b) nonsmooth facets develop under a velovfity- V (N) depending on the outward
unit normal vectorN, (c) circles merge and cusps emerge under unit nhormal veloci
V = N, and (d) a complex polygon shrinks on widely varying time scales under curvatt
flow VvV = C.

Topological changes such as merging can be naturally resolved with an implicit rep
sentation of the interfacB(t) via its signed distance function

F(x,t) = iyrgrl(rg)llx -yl (1)

If the specified velocity functiond¥ onT" is extended smoothly to a vector field(x, t)
onRY, then solving the advection equation

Fi—W.VF=0 @)

moves the zero sét(t) of the initial dataF with velocity V. Topological changes if(t)
are discovered when the zero set is extracted fFolyy contouring.

FIG.1. Challengesin moving interfaces: (a) complexity, (b) faceting, (c) merging, and (d) varying time scal

FAST SEMI-LAGRANGIAN CONTOURING METHOD 375

We solve the advection equation by the second-order semi-Lagrangian formula prese
in Section 1.2. Three independent computational modules then transform the moving ir
face to an advection problem:

e a fast distancing algorithm similar to [22], which produces the exact signed distar
F from a given interfac& (Section 1.3),

e afast extension algorithm from [25], which extends interfacial velocifieefined on
I to global smooth velocitie®/ defined everywhere oR? (Section 1.3), and

¢ the fast adaptive contouring technique of Section 2, which extracts the zétdreet
the solutionF of the advection equation with user-specified accuracy.

1.2. Semi-Lagrangian Advection Formulas

We solve the advection equation (2) with an explicit semi-Lagrangian formula whi
allows us to extract only the zero set of the solution. Such formulas rely on the observa
that Eq. (2) propagates solution values along characteristies(t) satisfying

5(t) = —W(s(t), t). (3)

Thus the solutiorF (x, t + k) at timet + k can be evaluated by solving the characteristic
ODE (3) backwards in time from = s(t + k) tos(t) and setting=(x, t + k) = F(s(t), t).
Semi-Lagrangian schemes solve the characteristic ODE numericallyxfrera(t + k) to
s(t) and approximate the off-grid value(s(t), t) by shape-preserving interpolation [14]
or monotone advection [18]. (Our approach omits the approximatiénaofd evaluates the
signed distancé& (s(t), t) exactly.) Their unconditional stability allows large time steps ir
linear advection [19, 20] and moving interfaces [23-25], leaving the time step controll
only by accuracy.

Semi-Lagrangian moving-interface methods which solve the advection equation by
first-order Courant—Isaacson—-Rees (CIR) formula [3],

G(x) = F(X,t) = F(x + KW(X, t), 1), (4)

were developed and justified in [23, 24]. In [25], we combined the CIR predictor (4) wi
a second-order trapezoidal corrector formula,

G(X) = F(X + kKW, 1), 1), W(X,t) = %W()"(, t) + %W(x,t + k). (5)

The predicted velocityV extends the velocit}/ determined by the zero sétof G at
time t + k. This predictor—corrector pair is second-order accurate in time, explicit, al
unconditionally stable in the maximum norm: each r@walue is an exadt value, so the
maximum ofF can never increase.

In the context of a moving interface, semi-Lagrangian advection defines the numer
solution G by a simple explicit functional formula (5) at any desired evaluation poin
Eulerian methods, by contrast, advance solution values on a grid and interpolate betv
grid points. Thus semi-Lagrangian methods find the new interfaice- &by contouring a
well-defined function without evaluating the advected solution away from its own zero s
Computational effort is naturally concentrated on the moving interface.

376 JOHN STRAIN

A

FIG. 2. (a) Four-level distance tree for a simple interface and (b) triangulation of its cell vertices and cente
built from the cell configurations in (c).

Since our advection velocitW(x, t) extends the user-specified velocity functioial
defined on the zero sé&t(t) of F(x, t), each semi-Lagrangian time stEjit) — I'(t + k)
involves the following substeps:

e Evaluate the signed distancE from the interfacd (t).

e Evaluate the interfacial velocityv of I'(t) by a user-supplied module.

e Extend V to a global advection velocity.

e Contour the predicted CIR solutio6 defined by Eq. (4) to get the predicted interface
r.

e Evaluatethe predicted interfacial velocity of I".

e Extend V to a global advection velocity.

e Contour the corrected trapezoidal soluti@defined by Eq. (5) to get the corrected
interfacel’ (t + k).

The distancing and extension substeps are efficiently implemented via the quadtree-b
algorithms of Section 1.3, while effective algorithms for the contouring substeps are p
sented in Section 2. Geometric velocity-evaluation modules are described in Section 3

1.3. Quadtree Meshes: Distancing and Extension

A quadtree mesis composed of square cells organized intd_alevel tree structure as
in Fig. 2. Our fast algorithms for distancing and velocity extension are based on a spec
guadtree developed in [22].

The distance tree. An interfacel’ composed o piecewise-linear elements of similar
size can be efficiently resolved on a tree mesh built by splitting anyGelhose edge
length exceeds its minimum distance

d(C,T') = minmin||x — y|| (6)
xeC yel’

to I'. When the elements vary widely in size, computational efficiency benefits from
modified criterion: split cells whose concentric trifiéstersect more than two adjacent
elements. This adaptive resolution copes better with interfaces resolved over widely vary
spatial scales. Such a tree allows fagtN log N) evaluation of the signed distance function
F (x) on each celC by the fast distancing algorithm from [25]:

2I1f C = {|x — & < r}, then the concentric tripl& of C is defined byT = {|x, —a;| < 3r}.

FAST SEMI-LAGRANGIAN CONTOURING METHOD 377

e Start: Set the current minimum distanoeto I' equal toco.

e Loop: Whilel > 0 and the cub€ (x, m) with centerx and half-side lengtim is not
completely contained in the concentric trigleof C, replaceC by its parenC*, find and
record an elemenif; nearest tox in the element list oC*, replacem by the minimum
distancem™ from x to I'}, and replacé by | — 1.

e Sign: Given a nearest elemeRt to x, determine the sign df = +m* by checking
normal vectors of ' and its neighbors.

This search strategy builds the distance tre®iiN log N) time and space complexity
and always terminates in a bounded number of stepd:4n4 dimensions, any element
intersectingr is nearer tox than any element outside the trigié** of thegreatgrandparent
C***.

Triangulation. For “balanced” quadtrees in which adjacent cells differ in size by n
more than a factor of 2—such as the distance tree shown in Fig. 2a—cell vertices
centers can easily be triangulated into conforming meshes [4]. Each cell in such a tree
0 to 4 smaller neighbors id = 2 dimensions, so a triangulation can be built from the si
possible cell configurations shown in Fig. 2c. The three-dimensional case is similar w
more configurations.

Velocity extension. Moving interfaces via the advection equation (2) requires a globall
defined velocityV which extend® smoothly off the interfac€ (t). Some moving-interface
problems suggest a natural velocity extension, but a modular widely applicable black-|
solver requires a general problem-independent velocity extension as in [25].

If g is any continuous function oR, a nearest-point extensi@h is defined byG(x) =
g(y), wherey is a point onI" nearest tax, chosen arbitrarily if there are several points
equidistant fromx. The nearest-point extensi@his continuous near smooth interfades
but may be discontinuous at pointsvith several nearest neighbors. The numerical Whitne!
extension procedure of [25] guarantees continuity by building the continuous piecewi
linear interpolanWV of the nearest-point extensid@h from the triangulated distance tree
mesh. Both extensions satisfyraaximum principleThe maximum oveRY of W cannot
exceed the maximum ovér of g. Wheng is the velocityV of I', the maximum principle
guarantees that regions of space far fldroannot move faster than the interesting nearb
regions.

The nearest-point extension can be efficiently evaluated on a triangulated distance
for I'. When the tree is built, a pointer from each vertex and center to a nearest elefient
is stored G (x) can then be evaluated {D(1) time by finding a nearest poigton a known
nearest element and setti@gx) = g(y). Table | verifies theO (N log N) cost of building
the distance tree and evaluating the nearest-point extension shown in Fig. 3.

TABLE |
CPU Seconds for Tree Building, Triangulation, and Extension

K 6 7 8 9 10 11 12

Cells 1421 2957 6029 12,173 24,461 49,037 98,189
Distance tree 0.04 0.11 0.24 0.57 1.24 2.81 6.35
Triangulation 0.02 0.05 0.11 0.24 0.51 1.11 2.32
Extension 0 0.01 0.01 0.02 0.03 0.07 0.14

378 JOHN STRAIN

___1

FIG. 3. (a) Interface andK -level distance tree, (b) interfacial velocitycomponend,, and (c) nearest point
extensionW, with K = 5 and 6.

At completely arbitrary point € RY, a distance tree does not guarantee efficient eva
uation of the nearest-point extension. Poitscated in large cells far frof may require
searching long lists witl© (N) elements. However, the distance tree speeds () eval-
uation forx nearI", because such points are contained in small cells with few nearl
elements where the search strategy is efficient. Thus we use the nearest-point extel
for semi-Lagrangian contouring where effort is focused near the interface. The numer
Whitney extension can be efficiently evaluated everywhere by point location [6, 15] a
local interpolation.

2. FAST ADAPTIVE CONTOURING

The contouring problem—extracting the zero set of a given continuous functi®a-
naturally separates into two stages: topology resolution and contour approximation [2
11]. Topology resolution determines a consistent and hopefully correct topology for the
of curves, surfaces, and degenerate objects which make up the zero set. Each comp
of the zero set is enclosed in a collection of bounding boxes which separates it from
other components. Contour approximation iteratively refines an explicit representation of
approximate zero set for increased accuracy. We describe our topology resolution techn
in Section 2.1 and adaptively refine the interface in Section 2.2. The two-dimensio
algorithm presented generalizes immediately to three dimensions: triangulation beco
tetrahedralization and segments become triangles.

Contouring the semi-Lagrangian formula for moving interfaces imposes different 1
quirements than many standard graphical applications of contouring. Our main issues

FAST SEMI-LAGRANGIAN CONTOURING METHOD 379

0Lt

IA

0.73125 t =0.7375 t = 0.74375 0.75<t<2

O
©

FIG. 4. Island formation at cusps in merging.

Accuracy. We require a contouring technique with high and controllable accuracy. T
zero set found at each time step becomes the initial value for evaluating the velocity
moving the interface through the next time step. Therefore contouring errors ok size
accumulate into global errdd («/ k) per unit time.

Consistency. In the presence of inexact computer arithmetic, high accuracy requir
globally correlated decisions to ensure a consistent interface topology—free of loops, cr
ing, dead ends, and so forth. In the context of moving interfaces where cusps form and p
off, the exact topology of the numerical solution at titmaay be irrelevant to the later evo-
lution of the interface (Fig. 4). Thus consistency may be balanced against efficiency
accuracy.

Efficiency. Since we contour the solution twice per time step, the contouring techniq
must be efficient: computational effort should concentrate on the zero set. Standard «
touring techniques obtain a set of smooth contours to high accuracy with a global unifc
Cartesian mesh [13]. This is more than we want, at a price we cannot afford.

Derivatives. Many robust contouring techniques require derivative& pAssume that
G is a piecewise polynomial or spline, or assume that all zeroes of certain nonlinear ¢
tems involvingG and VG can be found exactly [2, 8]. Evaluation G from a semi-
Lagrangian formula requires differentiation of nonsmooth distance functions and exten
velocities, so derivative-free contouring techniques are desirable. Hov&gawjthin O (k)
of the signed distance functidnh, which hag|VF| = 1 almost everywhere; thus a gradient
bound|| VG (x)|| < y can usually be assumed and plays a key role in resolving a consist
topology.

Transversality. Contouring problems are well posed under the transversality conditic
that G and VG do not vanish simultaneously [2]. For the CIR form@&x) = F(x +
kW(x)) and certain special velociti®¥, this condition can be verified by exact computation.
In moving interfaces, we usually assume transversality since we start from a fresh sig
distance function withj VF | = 1 at each time step.

2.1. Topology Resolution

We extract a consistent topology for the interface by buildini§ -tevel triangulated
guadtree mesh, evaluatigat the mesh vertices, finding the exact zero set of the continuo
piecewise-linear interpolant, and refining its vertices by bisection.

Meshing. The zero seff of G can be efficiently resolved on a triangulated quadtree mes
built by pretending thab is a signed distance function and splitting eachCelthose edge

380 JOHN STRAIN

- Exact - - Interpolate _ - Bisect

+ + + + + +

FIG. 5. Linear contouring and bisection of a zero set.

length exceeds the minimum value|@| on C. SinceG is not a signed distance function,
the resulting quadtree may habalancednd difficult to triangulate: neighboring cells vary
in size by more than a factor of 2 (Fig. 2).

We can balance the quadtree by brute force [4] or by modifying the cell splitting criterio
fix an estimated gradient boundfor |[VG|| and split every celC whose size exceeds the
minimum of|G|/y overC. Ifthe bound|VG]|| < y holds, then the resulting tree is balanced
and easy to triangulate. Otherwise, we doubkend rebuild until satisfied.

Interpolation. Given nonzero function valugs(x) at the vertices of a triangulation,
extracting the zero set of the continuous piecewise linear interpQlamtthe triangulation
is straightforward. Ind = 2 dimensions, for example, each triangle wh@&rehanges sign
contains a unique line segment on whi@hvanishes. These line segments form a polyg-
onal curve because the triangulation is conforming @nig continuous. Following each
polygonal zero curve as far as possible in both directions produces an oriented compo
of I'(t + k) with G > 0 on its right (Fig. 5). Id = 3 dimensions the contouring process is
similar: tetrahedra replace triangles and triangular patches replace line segments.

Exact zero vertex values produce ambiguities in extracting the zero gtweé choose
a small tolerancg such as 10'° and perturb vertices whe(&| < g until all vertex values
of |G| exceed. If repeated perturbations fail, transversality is doubtful and the contourir
problem may be ill posed.

Table 1l verifies the predicte® (N log N) = O(K2K) cost andO(2-2X) = O(h?) ac-
curacy of linear interpolation on the triangulated quadtree, applied to the interface of Fig
The error reported is the maximum of the exact distance fungpaver segment endpoints
and midpoints.

Bisection. Before declaring the interface topology resolved, we move each interfa
vertex to satisfyyG| < B. Each interface vertex found from the linear interpolant is knowr

TABLE Il
Error and CPU Seconds for Linear Contouring

K 3 4 5 6 7 8 9
Cells 85 301 865 2041 4445 9309 19,005
Segments 47 114 217 436 889 1819 3610
Length 0.48 0.214 0.104 0.0604 0.0305 0.0150 0.00817
Error 0.191 0.121 0.0323 0.0099 0.00296 0.000828 0.000214

CPU 0.01 0.01 0.03 0.07 0.15 0.35 0.71

FAST SEMI-LAGRANGIAN CONTOURING METHOD 381

K=3 4 5 6

Iy F £ 1

(HYRE -
—lllilll L
NN EENE

FIG. 6. Contouring a propeller shape on a triangulaitedevel tree mesh.

to lie on the edge of some triangle, bracketed by two triangle vertices wi€h values of
opposite sign. A standard one-dimensional bisection algorithm [12] applied along this e
is guaranteed to produce a zero®fon this edge to accuragy in O(log8) evaluations
of G (Fig. 5). In three-dimensional problems, the interface is a collection of triangles
R3, and each triangle vertex moves along an edge of the tetrahedralization. The resu
interface enjoy$G| values belows at every vertex and shares the topology of the piecewis
linear interpolant on the triangulation. In Section 2.2, we adjust the patches which conr
these highly accurate vertices, to improve the resolution of the interface without chang
the interface topology.

2.2. Contour Approximation

Given a collection of piecewise linear patches with a consistent topology and all verti
within O(B) of the exact interface, we now improve the resolution of the underlying zel
setl” by P passes of the following adaptive refinement algorithm (Fig. 7).

Split. Any patch wheréG| exceeds a specified tolerancat the midpoint is subdivided
into patches of half the size. New vertices are interpolated linearly between existing verti
Since|G| > « at the new vertices, the following steps move them to redG¢e

Split) Bracket Refine

+ + + + + +

FIG. 7. Adaptive refinement of a zero set.

382 JOHN STRAIN

FIG. 8. Safeguards in adaptive refinement: (a) topology preservation and (b) triangle limiting.

Bracket. New interface vertices, unlike the linear interpolant vertices of Section 2.1, a
not bracketed between triangulation vertices wi@hanges sign. Thus bisection requires
a preliminary bracketing step which finds a point whéréas opposite sign from the new
vertex. In order to keep vertices from bunching together and losing resolution, we s
brackets along the normal vector to the interface at the new veraxdistance equal to
the patch radius. The bracketing distance is reduced if necessary to avoid collisions \
adjacent segments (Fig. 8).

Bisect. Foreach bracketfound, we run the bisection algorithm to obtain an approxim:
zero within tolerances. If more than one approximate zero is found, we accept the or
nearest to the new vertex, subject to the following topological safeguards.

Safeguards. We avoid adjacent patch crossings by rejecting any new vertices whi
would produce a tiny angl@| < 2.56° with either neighbor. Such crossings are possible
when adaptive refinement attempts to compensate for incorrect topology in the linear in
polant (Fig. 8). The topology of the linear interpolant can be preserved by preventing n
vertices from leaving the triangle where they start, but this sacrifices too much accuracy
the sake of topology preservation. Thus we allow new vertices to move to adjacent triang
but only if the destination is empty (Fig. 8).

Prune. Inthe final pruning step, we produce a more uniform resolution of the interfa
by deleting patches with areas less thatimes smaller than their neighbors. Pruning
produces neighboring patches of comparable sizes, yielding more accurate normal ve
when the intrinsic geometry module of Section 3.1 is used.

The O(a~1/?) cost andO(«) accuracy of the segment midpoints produced by this algc
rithm for the smooth interface of Fig. 6 are verified in Table .

3. LOCAL GEOMETRIC VELOCITIES

Solving any moving-interface problem with our modular approach requires a us
supplied module which evaluates the interfacial velocity functional. We provide two mo
ules for geometric velocitie¥ = V (x,t, N, C) which depend on the local position and
geometry of the interface. These velocity functionals pose numerical difficulties becal

FAST SEMI-LAGRANGIAN CONTOURING METHOD 383

TABLE 11l
Error and CPU Seconds for Adaptive Contouring of a Propeller

K/e 3/10' 4/102 5/10° 6/10% 7/10° 8/10° 9/107

Cells 85 301 865 2041 4445 9309 19,005
Segments 32 82 245 757 2344 7382 23,683
Length 0.55 0.227 0.101 0.049 0.027 0.011 0.0034
Error 101 102 103 104 105 10°® 107

CPU 0.02 0.04 0.09 0.26 0.78 2.38 7.41

standard formulas fax andC are complicated and their numerical approximation is sens
tive. Thus we evaluate normal vectors by intrinsic methods in two dimensions and curvat
by embedded methods in general dimension.

3.1. Intrinsic Geometry

Supposd” is a curve inR?, approximated by a polygon with edges¢_.1. The exact
normal vector and curvature are given by the intrinsic formulas [5]

N = X = (cos4, sinh) C= ! ge)(s) X, Yt =(=y,x)
[IXsll ’ ’ lIxsll ds™ ’ o

wherex(s) is a parametrization df'. For any functiong(s) onI', a natural discretization
of the vertex derivativ%% is the left-right average difference

1/ 0+1—0 0 —0i-1)
Ag =1 + .
973 <||xi+1—xi 1 =%l

With g = x this gives an approximate normal

Axt
= ——. (7)
| AX ||
Since the normal angle satisfies
dN
Nt —— =6,
ds ~ °
we can approximate curvature by
1 1

A ||

Equation (7) produces first-order-accurate normal vectdrdasfsmooth, but Eq. (8) often
produces inaccurate oscillatory curvature. Thus we present an alternative module base
embedding" into a local uniform mesh.

384 JOHN STRAIN

I

= IIIW

FIG. 9. Local embedded mesh with range= 3 for a simple interface (a), viewed asntervals in (b), and
asy-intervals in (c).

"

3.2. Embedded Geometry

Curvature can be accurately computed from the signed distance fuictiamnthe for-
mulas [26]

VF
N=——, C=-V-N, 9)
IV
which embed the interfadeas a subset &t“. We generalize the velocity-evaluation method
of [25] to build a uniform mesh nedr, evaluate= exactly at mesh points, apply high-order
essentially nonoscillatory (ENO) differentiation formulas [10] to extract smooth accura
approximations to\ andC, and interpolate back to the verticeslaf

Embedded mesh First, we build a local uniform mesh neBrand evaluaté. The sim-
plest technique, marking nearby points of a global uniform mesh, is prohibitively expens
for fine meshes. Thus we employ the efficient sorting and pruning technique of [25].

A two-dimensional local mesh with mesh siz€Fig. 9) can be viewed as a collection
of disjoint x-intervals(i, :ig, j) = {(ih, jh) | iL <i <iRr}, or as a similar collection of
y-intervals. It can be built by listing every mesh point withiorizontaldistanceR h of any
interface pointy € T" and then listing each mesh point withiartical distanceRh of some
point produced in the horizontal pass. Efficient construction algorithms are ensured
sorting and pruning local mesh points listed more than once. The local mesh is store
a data structure which contains the mesh paiitts jh), a list of x-intervals(i, : iR, j),
and so forth and includes every point necessary to form a difference stencil of half-wit
R for differentiating or interpolating to any interface powi I'. The three-dimensional
case is similar. The signed distance functibnan be efficiently evaluated at the local mesh
points—which are close to the interface—by fast exact distancing with the distance tre

Differentiation. Equidistant centered difference formulas oscillate if their stencils cros
points whereF is not smooth. Thus we computé and C on the local mesh by ENO
methods which shift equidistant stencils to avoid cornefs.ikiVe applyS passes of cosine
smoothing to reduce oscillations further and satisfy CFL conditions [25] and then interpol
N andC back to the vertices df and apply the user-specified velocifyx, t, N, C).

4. IMPLEMENTATION AND NUMERICAL RESULTS

We demonstrate the accuracy and efficiency of the semi-Lagrangian contouring apprc
by computing solutions to a wide variety of moving-interface problems. We describe cont

FAST SEMI-LAGRANGIAN CONTOURING METHOD 385

TABLE IV
Control Parameters and Default Values

Name Default Explanation

40...640 Number of time steps on,[@]

N

k a/N Time step

K 3...7 Depth of contouring tree mesh

P 0...4 Depth of adaptive refinement

o 10K Midpoint error tolerance for adaptive refinement
B 1010 Bisection tolerance

o 10t Segment pruning tolerance

M 271K EmbeddedM x M mesh size

E 3 Order of ENO differentiation on embedded mesh
S 0...3 Number of cosine smoothing passes on embedded mesh
L K+ P Depth of distance tree

parameters and their default values in Section 4.1, discuss convergence testing in Sectio
and outline our implementation in Section 4.3. We measure dissipation for a propeller ur
passive rotation in Section 4.4. First-order geometric velocities depending oMyaomd
inducing anisotropy and merging are treated in Section 4.5. In Section 4.6, we demons;
convergence for second-order curvature-dependent velocities, while motion under a sec
order nonlocal geometric velocity is computed in Section 4.7.

4.1. Control Parameters

Our experiments vary the initial interfa¢&0), the velocity functionaV, the spacetime
domain [Q a] x [—b, b]?, and the control parameters summarized in Table IV. Convergen
studies proceed by refininy, K, P, anda with other parameters set to default values.
The distance tree depthdoes not affect the error and is sekto+ P, so that each distance
tree cell encloses a fixed number of segments for efficiency. W-séd except for strongly
curvature-dependent velocities, where stability requé&sincrease logarithmically with
embedded mesh size.

4.2. Convergence Studies

We carry out both exact and graphical convergence studies. When the exact sic
distance functiorf- is known, we tabulate maximum interfacial errors

Ex = max|F(x,1)] (10)

xel(t)

and CPU seconds per stdp We analyze convergence with>x55 tables ofE,, and T
whereN < 2N, K < K 4+ 1, anda < «/10 as the row increases, whie < P + 1 as
the column increases. Thus each row exhibits first-order spatial convergence udiikéhe
error takes over, while th€ = 4 column exhibits second-order temporal convergence
the O(a/ k) accumulated spatial error ®k?) sincea = o(k®). Figure 10 demonstrates
first-order convergencE,, = O(T 1) for three cases with exact solutions: rigid rotation
(Section 4.4), merging circles (Section 4.5.2), and curvature flow (Section 4.6.1).

386 JOHN STRAIN

Rotation (4.4) Merging (4.5.2) Curvature (4.6.1)
3 E 3
1.0000 ; 1.0000 1.0000
0.1000 N :’k%\ 0.1000 3 0.1000 -AX
0.0100 0.0100 N 00100 A
AN \“\\ \
0.0010 0.0010 o 0.0010 AN
y Y y -
N
0.0001 0.0001 0.0001
01 1 10 100 1000 T 61 1 10 100 1000 ¥ o1 1 10 100 1000 ¥

FIG. 10. Errors vs CPU times for exactly solvable examples.

For complex problems where exact solutions are not available, we demonstrate con
gence to graphical accuracy by superimposing coarse and fine computations. We laf
computation with given values fdy, S, K, P, anda as aN/S/K /P /« run for brevity.

The convergence of the numerical solution (modulo the time-stepping errdt)ias
creases with fixet supports the conclusions of [20, 23, 25]: semi-Lagrangian methods-
unlike Eulerian methods—do not suffer from Courant—Friedrichs—Lewy (CFL) stabilit
conditions.

4.3. Implementation

The semi-Lagrangian contouring approach was implemented in Standard C, comp
with the Sun C compiler and thefast optimization flag, and run on one 450-MHz CPU
of a Sun Ultra 60 under Solaris 7. Timings reported are preliminary as the code has
been tuned for maximum speed. Each time step t + k of our algorithm begins with
' = I'(t) and produce§'(t 4 k) by the following steps:

e [D, F] = DistanceTree(L, ")
[Build an L-level triangulated distance tréz aroundr".]
e V =Velocity(t,I')
[Call a user-supplied module to evaluate the velocity on the interface.]
e [' = Contour(K, P, a, B, p, G(X) = F(X + kKW(X, t), 1))
[Find the zero seF of the predicted CIR solutio.]
° [Ij IE] = DistanceTree(L, f’)
o V =Velocity(t +k, I
e I'(t +K) = Contour(K, P, a, B, p, G(X) = F(X + KW(x, 1), 1))

Once the distance tree has been built and nearest points have been stored, the ne
point extensiorW of the velocityV requires no additional effort to evaluate. Therefore the
extension steps from Section 1.2 can be omitted.

Semi-Lagrangian evaluation.The contouring algorithm requires values G{x) =
F (X, t) constructed by the following sequence of operations (Fig. 11):

e [y,0] = SignClosestPoint(I', D, X)
[Find the childless distance tree c€llin D containingx; search interface elements in
the concentric triples o€ and its ancestor€*, C**, andC***; find a nearest point
y € I'(t) to x and the signr = +1 of F atx.]

FAST SEMI-LAGRANGIAN CONTOURING METHOD 387

Ck*
. ,' 1 ” . I~
Vi \\
o N
/ / 7 \
KW(x,t)/ C W (1)
NI o
i \ O\
N G(x 2
\ A . M-
F
D D
CIR predictor Trapezoidal corrector

FIG. 11. Evaluation of the CIR predictor and the trapezoidal corrector at a goint

W(x, t) = V(y,t)
[Evaluate the nearest-point extensiorvbt x.]

X =X+ kW(x, t)

[Projectx backward to the predicted characteristic p&ift
[V,6] = SignClosestPoint(T, D, X)

Gx) =F& t)=&lIX - ¥I.

[Evaluate the exact signed distance fr&ro I'(t).]

Values of G(X) = F(X + kW(x, t), t)) are found with additional operations involving the
predicted interfacé and its velocityV (Fig. 11).

Contouring. Given the ability to evaluate any functidd at arbitrary points, the con-
touring of G proceeds as follows (Figs. 5 and 7):

e T =Tree(K, G, y)
[Build K-level triangulated tree mesh to resolve the zero seGafith gradient
boundy .]

o ' = ZeroSet(e, T, G)
[Build zero set of linear interpolant t& on triangulation, perturbing triangulation
vertices bye as necessary.]

e ' =Bisect(I', T, B)
[Refine zero set vertices by bisection along triangle edges to accgracy

e [' = Adapt(T', G, «, B, p)
[Split segments with midpointG| values abovey, refine new vertices by bracket-
ing and bisection along the normal vector to accurdcsind delete segments smaller
thanp times their neighbors.]

Velocity evaluation. We evaluate geometric velociti®swith the geometry modules of
Section 3. The intrinsic module is a single straightforward step, while the embedded moc
involves the following substeps:

e U =BuildLocalMesh(M, R, T')
[Build M x M local uniform meshJ within rangeR = E + Sof I'.]

388 JOHN STRAIN

40/3/1/1073 80/4/2/10* 160/5/3/1075 320/6/4/10~

FIG. 12. A propeller shape under rigid rotation: two periods.

e F =Distance(U, D)
[Evaluate exact signed distance function at mesh poiritsith distance tred®.]
e [N, ¢c] = EmbeddedGeometry(U, F, E)
[Evaluate normal vector and curvature on local uniform mesh with CEI&NO
evaluation of the embedded formulas in Eq. 9).]
e [N, C] = Interpolate(U,n,c, E,T")
[Interpolate geometric quantities from local uniform mékto interface” with order-
E ENO technique.]
e V =Velocity(N,C,I')
[Evaluate local velocity functional on interfacE with user-supplied module
and interpolatedN andC.]

We use the intrinsic approach for passive transport (Section 4.4) and first-order geometr
volving only the normal direction (Section 4.5). The embedded approach produces smoo
and more accurate curvature for the second-order geometric examples of Sections
and 4.7.

4.4. Passive Transport

We measure the dissipation of our method with a three-bladed propeller under rigid-b
rotationV (x, y) = (—V, X) (Fig. 12). This velocity is naturally defined everywhere, but we
evaluateV only at the vertices of (t) and extend by the general technique of Section 1.3
thus Table V provides a realistic picture of the errors after two rotatios=atiz and
supports the theoretical predictions of Section 4.2.

TABLE V
Error E., and CPU Secondd per Step for a Rotating Propeller

N S K o P=0 1 2 3 4
40 0 3 10° E, 0648 0.320 0.256 0.2462 0.247
T 0.079 0.142 0.272 0.445 0.770
80 0O 4 10* E, 0325 0.193 0.0944 0.0580 0.0778
T 0.232 0.434 0.834 1.39 1.97
60 0 5 10° E, 0255 0.126 0.0527 0.0454 0.0158
T 0.695 1.25 241 4.54 6.46
320 0 6 10° E, 0.183 0.0788 0.0311 0.0455 0.00347
T 1.83 3.32 6.67 12.9 22.4
640 0O 7 10" E, 0.124 0.0503 0.0180 0.00647 0.00337
T 4.64 8.36 16.5 33.3 62.5

FAST SEMI-LAGRANGIAN CONTOURING METHOD 389

0°: 40/0/4/2/10~* vs 80/0/5/2/10~5 80/0/5/2/1075: 0° vs 10°

FIG. 13. Triangles growing and shrinking with unit normal velocity: the circles illustrate Huygens’ principle.

4.5. First-Order Geometric Velocities

We demonstrate the topological robustness of the semi-Lagrangian contouring appre
by computing corners and smooth shapes, growing and merging with unit normal veloc
and regularly faceted shapes developing under anisotropic normal velocities correspon
to nonconvex Hamiltonians.

4.5.1. Viscosity Solutions with Corners

Computation of correct “viscosity solutions” for faceted interfaces depends on movin
corner with unit normal velocity. Inward motion should keep corners sharp, while outwe
motion should produce rounded corners.

The semi-Lagrangian formula satisfies Huygens’ principle and naturally computes
correct viscosity solution for a triangle growing and shrinking with unit normal velocity
Figure 13 superimposes 40/0/4/2tf0over 80/0/5/2/10* runs to show convergence to
graphical accuracy. Runs at resolution 80/0/5/2718nd tilted O versus 10 show that grid
orientation effects are negligible. Huygens’ principle is graphically verified.

4.5.2. Cusps in Merging Circles

Sharp inward-pointing corners naturally occur when smooth interfaces merge, so
verify correct behavior with the convergence study of merging circles shown in Fig.]
Cusp singularities and topological changes are computed automatically and accurately.
bubbles naturally form and disappear at the cusps where tangent circles merge, illustre
the importance of consistent rather than correct topology resolution. The errors shc
in Table VI and plotted in Fig. 10 surpass theoretical expectations, achieving first-or
accuracy in the maximum norm even for this nonsmooth solution.

40/0/3/0/10= 80/0/4/1/10~% 160/0/5/2/107° 320/0/6/3/10~°

FIG. 14. Circles merging with unit normal velocity.

390 JOHN STRAIN

TABLE VI
Error E., and CPU Seconds per Stefy for Merging Circles

N S K o P=0 1 2 3 4

40 0 3 10° E, 0.194 0.0854 0.0432 0.0344 0.0219
T 0.085 0.141 0.230 0.360 0.572

80 0 4 10* E, 0.0788 0.0386 0.0156 0.00616 0.00470
T 0.212 0.384 0.710 1.17 1.69

160 0 5 10° E, 0.0423 0.0207 0.00826 0.00298 0.00133
T 0.576 1.05 2.00 3.63 5.50

320 0 6 10° E, 0.0175 0.0101 0.00401 0.00149 0.000831
T 1.49 2.73 5.22 9.98 17.6

640 0 7 107 E, 0.00924 0.00509 0.00210 0.000863 0.000378
T 3.73 6.84 13.0 25.3 495

4.5.3. Anisotropic Normal Velocity and the Wulff Limit

Anisotropic motion along the normal vector connects moving interfaces to Hamiltol
Jacobi equationk; + H(VF) = 0, which encounter difficulties when the Hamiltoniiin
is nonconvex [7], for example, if

V =R+ecodmd) whereR+e(1l—m?) <0< R— e]. (11)

Our semi-Lagrangian approach deals effectively with nonconvex Hamiltonians.

We evolve an initially circular interface using Eq. (11) with= £+1 and|R| + ¢(1 —
m?) = —4. Figure 15 shows the development of the faceted interface, superimposing c
putations tilted at @ 10°, and 180/ m for anisotropiesn = 3, 4, 5, and 6. Grid effects are
negligible, convergence is fast, and the interface evolves rapidly into the regularly face
Wulff shape [27] with the correct anisotropy.

0° vs 10° vs 60° 0° vs 10° vs 45° 0° vs 10° vs 36° 0° vs 10° vs 30°

©
O] o

FIG. 15. Circles growing and shrinking into asymptotic Wulff shapes.

FAST SEMI-LAGRANGIAN CONTOURING METHOD 391

20/1/3/0/10~% 40/1/4/1/10~* 80/1/5/2/1075 160/2/6/3/10~%

FIG. 16. Circles shrinking under curvature flow.

4.6. Second-Order Geometric Velocities

Geometric velocities involving second-order derivatives, such as curvature gene
parabolic advection equations. Semi-Lagrangian formulas are designed for hyperbolic
vection and require small time steps or additional smoothing to maintain stability for cun
ture flows [23, 25]. We compute the curvature with an embedded mesh dfisize2¥+1
andS passes of cosine smoothing after each differentiatsda.increased logarithmically
as the resolution is refined, to maintain stability without compromising efficiency and e
curacy. The stability of the time-stepping scheme depends on the curvature reshutiol
and smoothingdS, but not on the “subgrid” resolution produced Bypasses of adaptive
interface refinement.

4.6.1. Circles Shrinking under Curvature

A classic geometric problem shrinks a plane curve with velocity equal to its curvatt
and forms a useful second-order test case. A circle shrinkingWithC has exact radius
R(t) = \/R(0)2 — 2t: thus withR(0) = /5, acircle should shrink to radius 1 at timne- 2.

A smaller circle withR(0) = 1 vanishes completely in time= 1/2. Figure 16 shows
convergence to graphical accuracy ox® < 2. CPU seconds per step and maximurr
errors in the interface locationtat= 2 are reported in Table VIl and Fig. 10, and they verify
the theoretical predictions of Section 4.2.

TABLE VI
Error E., and CPU Seconds per Stefy for Curvature Flow

N S K o P=0 1 2 3 4
20 1 3 10%® E, 0.106 0.130 0.072 0.057 0.057
T 0.131 0.200 0.346 0.483 0.645
40 1 4 10° E. 0.0664 0.0454 0.0241 0.0160 0.0142
T 0.253 0.462 0.854 1.40 1.90
80 1 5 10° E, 0.0305 0.0186 0.00909 0.00501 0.00376
T 0.557 1.04 1.99 3.65 5.85
60 2 6 10° E, 0.0188 0.00894 0.00443 0.00246 0.00186
T 1.15 2.35 4.59 8.62 15.9
320 3 7 107 E, 0.00684 0.00419 0.00200 0.00101 0.000711
T 2.87 5.20 9.97 19.6 38.4

392 JOHN STRAIN

FIG. 17. Tilted polygon shrinking under curvature flow: runs a through d have parameters 320/175/4/1(
through 2560/4/8/1C.

4.6.2. Nonconvex Interfaces under Curvature

A geometric theorem [9] predicts that any smooth embedded plane curve should colls
to a round point and vanish in finite time under curvature fldw= C. We illustrate the
theorem for a complex polygonal shape with the graphical convergence study showi
Fig. 17. The curvature velocity displays fast-moving infinite transients at initial sharp cc
ners, an intermediate regime of smooth motion, and infinite velocity again as the interf;
vanishes. Our adaptive approach easily converges to graphical accuracy despite the
range of spatiotemporal scales.

4.7. A Nonlocal Geometric Velocity

Moving-interface problems, such as crystal growth [17, 21]ramelocal—the normal
velocity at each point depends on allloft) and even on its historfl"(s) | 0 < s < t}. The

0.16 0.32 0.64 1.28 2.56

FIG. 18. Spiral unwinding under nonlocal volume-preserving curvature flow.

FAST SEMI-LAGRANGIAN CONTOURING METHOD 393

t=290 0.01 0.02 0.04
0, O, PO, PO
O OO © O Q} O O C/\C) © O Q ©

N6 o 0 o O o O

0.08 0.16 0.32 0.64
Oy Cll O O O
° QO O O

1.

2.56 5.12 10.24

28@ ~ N
O O —

C

FIG. 19. Bubbles merging under nonlocal volume-preserving curvature flow.

simplest nonlocal geometric velocity

vz<c:—f”‘>Cds>N (12)

fr(t) 1ds

smooths the moving interface by curvature while preserving the area inside the interf:
so arbitrary shapes become round but the interface does not vanish. Small compor
disappear as their area is transferred to large ones.

We study a tilted square spiral unwinding under velocity (12) in Fig. 18, where 512/2/7
103 and 1024/3/8/3/10* runs converge to graphical accuracy. The interface is shown
geometrically increasing timés= 0, 0.01, 0.02, ..., 2.56: its motion slows dramatically as
curvature variation decreases toward its final steady state. Figure 19 shows complex dyn
merging of initially circular bubbles under velocity (12), with parameters 2048/3/7/4/10
Interfaces merge and disappear accurately and stably even under this second-order not
velocity.

ACKNOWLEDGMENTS

The author thanks the referees for many helpful suggestions.

REFERENCES

1. G.Agresar, J. J. Linderman, G. Tryggvason, and K. G. Powell, An adaptive, Cartesian, front-tracking met
for the motion, deformation and adhesion of circulating céll€omput. Physl43 346 (1998).

394 JOHN STRAIN

2.

H. Burger and R. Schaback, A parallel multistage method for surface/surface inters€ctioput. Aided
Geom. Desl0, 277 (1993).

. R. Courant, E. Isaacson, and M. Rees, On the solution of nonlinear hyperbolic differential equations by fi

differencesComm. Pure Appl. Mattb, 243 (1952).

. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzk@pinputational Geometry: Algorithms and

Applications(Springer-Verlag, Berlin, 1997).

. M. P. do CarmoDifferential Geometry of Curves and Surfa¢sentice—Hall, New York, 1976).
. H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone subdiGsimmun.

Assoc. Comput. Mec9, 669 (1986).

. L. C. EvanspPartial Differential EquationgAmer. Math. Soc., Providence, RI, 1995).

8. T.A.Grandine and F. W. Klein, IV, A new approach to the surface intersection proBemput. Aided Geom.

10.

11.

12.

13.

14.

15.

16.
17.
18.

19.

20.

21.
22.
23.
24.
25.
26.

27.

Des.14, 111 (1997).

. M. A. Grayson, The heat equation shrinks embedded plane curves to round jdbifferential Geom26,

285 (1987).

A. Harten, S. Osher, B. Engquist, and S. R. Chakravarthy, Uniformly high order accurate essentially r
oscillatory scheme]. Comput. Physr1, 231 (1987).

J. Hoschek and D. Lass€&uyndamentals of Computer Aided Geometric Degiyi Peters Wellesley, MA,
1993).

D. E. Knuth,The Art of Computer Programmin@\ddison—Wesley, Reading, MA, 1998), 2nd ed., \ol. 3,
Sorting and Searching

A. Preusser. Efficient formulation of a bivariate na@feHermite polynomial on triangleCM Trans. Math.
Softwarel6, 246 (1990).

P. J. Rasch and D. L. Williamson, On shape-preserving interpolation and semi-Lagrangian tr&hapbrt,
J. Sci. Stat. CompuLl, 656 (1990).

N. Sarnak and R. E. Tarjan, Planar point location using persistent searchCoeasun. Assoc. Comput.
Mech.29, 669 (1986).

J. A. Sethiarl,evel Set Methods and Fast Marching Meth@@ambridge Univ. Press, Cambridge, UK, 1999).
J. A. Sethian and J. Strain, Crystal growth and dendritic solidificalid®omput. Phy98, 231 (1992).

P. K. Smolarkiewicz and W. W. Grabowski, The multidimensional positive definite advection transport alc
rithm: Nonoscillatory optionJ. Comput. Phys36, 355 (1996).

P. K. Smolarkiewicz and J. Pudykiewicz, A class of semi-Lagrangian approximations forJluAdsios. Sci.
49, 2082 (1992).

A. Staniforth and J. @&, Semi-Lagrangian schemes for atmospheric models—A reMew, Weather Rev.
119 2206 (1991).

J. Strain, A boundary integral approach to unstable solidificalid®omput. Phys85, 342 (1989).

J. Strain, Fast tree-based redistancing for level set computatid@@smput. Physl52, 648 (1999).

J. Strain, Semi-Lagrangian methods for level set equatio@ymput. Physl51, 498 (1999).

J. Strain, Tree methods for moving interfacesComput. Physl51, 616 (1999).

J. Strain, A fast modular semi-Lagrangian method for moving interfdc€nmput. Physl61, 512 (2000).
C. Truesdell and R. A. Toupin, The classical field theorieklandbuch der Physik Ill/ledited by S. Rigge
(Springer-Verlag, Berlin, 1960).

G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und deogurilj der Krystallflachei, Krystall.
Min. 34, 449 (1901).

	1. INTRODUCTION
	FIG. 1.
	FIG. 2.
	TABLE I
	FIG. 3.

	2. FAST ADAPTIVE CONTOURING
	FIG. 4.
	FIG. 5.
	TABLE II
	FIG. 6.
	FIG. 7.
	FIG. 8.
	TABLE III

	3. LOCAL GEOMETRIC VELOCITIES
	FIG. 9.

	4. IMPLEMENTATION AND NUMERICAL RESULTS
	TABLE IV
	FIG. 10.
	FIG. 11.
	FIG. 12.
	TABLE V
	FIG. 13.
	FIG. 14.
	TABLE VI
	FIG. 15.
	FIG. 16.
	TABLE VII
	FIG. 17.
	FIG. 18.
	FIG. 19.

	ACKNOWLEDGMENTS
	REFERENCES

